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The text I am mainly consulting is Percolation by Bollobás and Riordan. The argu-
ments presented here are virtually identical to the proofs in the book with commen-
tary. None of these arguments I can claim as my own. In writing these sections,
I did not want to robotically reproduce their works and so I did my best to recreate
them from my mind. Yet, due to the time I spent studying the book, you’ll notice
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were not completely obvious to me while reading, as well as providing more visuals to
make percolation more accessible. Please contact me if you have any concerns about
copyright infringement.

Contents

1 Overview 3

2 Definitions 6

3 Unique Boundary 12

4 Proof of Non-Trivial Bounds for Critical Values on Z2 17

5 Powersets, Hypercubes, Up-sets 20

6 Harris’s Lemma 23

7 Crossing a Square 27

8 Russo-Seymour-Welsh Method: From Squares to Rectangles 31

9 Harris’s Theorem 37

10 Conclusion 40

2



1 Overview

What are the differences between the graphs below? [Figure 1]

Going from 0.4 to 0.5 to 0.6, we see more edges are being added. I would like to
draw your attention to the size of the clusters, or the clumps of connected edges.
At 0.4, the clusters are small; none of them take up more than a quarter of the
graph. At 0.5, we see see bigger clusters, and at 0.6, most of the graph belongs to
the same cluster [Figure 2]. Of course, we haven’t discussed the mechanism behind
why we are including edges, but we see a rapid transition from going 0.4 to 0.6.
Understanding this transition is the big question behind this paper and is at the
heart of Percolation Theory.

What is Percolation Theory? In short, it is the study of rapid transition within a
random system. When coffee is percolating, water passes through a filter. If the
water did not pass through, we would say percolation did not occur and we would
not be able to enjoy our coffee. The fibers in the filter bind in patterns which may
allow water to pass through, but what if we changed the probability of the fibers
binding slightly? Would water be able to flow through now?

Or consider this: Take two cups of water of the same size and temperature. In one,
many many molecules are interacting in a complex way and, in the other one, we also
have many many molecules bouncing off each other in a different way. Yet, when we
place them in a freezer, once the cups reach 0◦C, structure suddenly arises in both
of them regardless of how the molecules are interacting.

Percolation theory provides a way to model these systems. Contrast percolation
with a diffusion process. Both percolation and diffusion model the spread of fluid,
yet diffusion focuses on randomness regarding the fluid and percolation focuses on
the randomness regarding the medium.

Some applications of percolation theory are in material science, neuroscience, infor-
mation theory, and economics. Percolation theory was born out of the ponderings of
Broadbent in modeling mask filters for coal mining (1954). The Monte Carlo simu-
lations to estimate these models were considered some of the most difficult programs
of the day. In 1961, the Murray Hill Lab had a program run for 39 hours analyzing
these models. This was no small task for computers needing constant maintenance
to prevent them from breaking down. When economists consider the industrial rev-
olution, they focus on the diffusion ideas. Yet the medium of communication of
these ideas, I conjecture, was far more important in the drastic permanent change
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Figure 1: Three Related Graphs
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Figure 2: Graphs with Largest Cluster Highlighted for p = 0.4, 0.5, and 0.6 (clockwise)
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of society.

Returning to the idea of a rapid transition, percolation, to some degree, is the study
of probability measures on a lattice graph structure. The quest to find the probability
where this sudden transition occurs on different lattices, or infinite grids, was the
focus of percolation theory for the first 20 years of the field’s existence. There have
been some deep results in percolation theory. Recently, the 2010 Fields Medal was
awarded to Stanislav Smirnov for his work in percolation on the triangular lattice.

The first portion of the paper focuses on the basics. It includes definitions, a proof
of a unique boundary for a finite cluster, and then a proof bounding the critical
probabilities (which will be defined shortly) between 1/3 and 2/3. These bounds
were established by Broadbent and Hammersley.

The second portion of the paper builds up the machinery to prove Harris’s Theorem
via Harris’s Lemma and lemmas regarding the crossing of rectangles. The proof of
Harris’s Theorem will show that the critical bond probability for having an infinite
cluster is greater than or equal to 1/2. Enjoy!

2 Definitions

To improve accessibility, the definitions will be less general than what Bollobás and
Riordan present. Our focus will be on independent bond percolation in Z2. For
those interested in the matter, I encourage you to read their work—site percolation,
oriented percolation, and lattices of different structures are just the beginning.

We start with the Square Lattice, Z2. It looks like graph paper stretched across
the plane. [Figure 3]

The edges we will refer to as Bonds and the vertices as Sites. You’ll notice that
every site has exactly 4 bonds leaving it (we say the Degree of each vertex is 4) and
each site is at an integer pair. It is a very nice and simple structure. In general, our
Graph Λ will be connected, infinite, and locally finite (which just means each site
has a finite degree). As you see, Z2 fulfills these properties. We refer to the set of
bonds as E(Λ) and the set of sites as V (Λ). Out of laziness, often we will say x ∈ Λ
instead of x ∈ V (Λ) and put off doing the dishes.

More formally, Z2 is such that V (Z2) = {(a, b) : a, b ∈ Z} and E(Z2) = {ab : |a−b| =
1 for a, b ∈ V (Z2)}.
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Figure 3: Part of Z2

Z2 is very simple. But we can choose a Subgraph of Z2, which may be more
interesting, by selecting which bonds to consider open, or in our subgraph, along
with all our sites.

For example, we might choose the subgraph in Figure 4.

Choosing bonds to be open by hand is tedious, especially if we want to choose an
infinite number of them. We should defined a function that does the work for us.
A Bond Configuration is a function ω : E(Z2) → {0, 1}, e → ωe where a bond e
is open iff ωe = 1. When we consider a specific ω, it chooses if a bond is open (in
the subgraph) or closed (not in the subgraph). We will let Ω be the set of all bond
configurations.

There are many functions from the edges set to {0, 1} but let’s imagine a function
assigns each bond e independently to be open with some probability, p, i.e. one bond
being open has no effect on other bonds being open. We will consider the subgraph
ω induces, Z2

p.

Without great formality we will define a Probability Measure for Z2:

PZ2,p =
∏
f∈F1

p
∏
f∈F0

(1− p)

where the bonds in F1 are open and in F0 closed. We will use the shorthand Pp =
PZ2,p.

Now we can talk about the probability of events on the square lattice. For example,
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Figure 4: Homer as a subgraph

the probability that all bonds are open is Pp(e ∈ F1|e ∈ Z2) =
∏

e∈Z2
p = 0 except

when p = 1.

Recall the three graphs from the overview, now with the largest clusters highlighted
and associated values of p. [Figure 5]

Notice the clusters form at random. As we increase p, the size of the clusters change
quite rapidly. At first very few are connected, and then suddenly most of the sites
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Figure 5: Graphs with Largest Cluster Highlighted for p = 0.4, 0.5, and 0.6 (clockwise)

in our rectangle are part of the same cluster.

To discuss this mathematically, let’s define a few things: xi refers to a site and ei is
a bond joining xi−1 and xi.

Figure 6: A Path, a Cycle, and a Walk (Repeated Edges Hidden)

A Walk is an alternating series of sites and bonds, x0, e1, x1, e2, ..., el, xl where ei =
xi−1xi for 0 < i ≤ l.

A Path is a walk such that xi 6= xj for 0 ≤ i < j ≤ l, otherwise known as a
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self-avoiding walk.

A Cycle is a walk such that x0 = xl and xi 6= xj for 0 < i < j < l.

Distance, d is length (number of bonds) of the shortest path between two sites.

An Open Path is a path along open bonds from x to y ∈ Λ denoted {x → y}. If
there are an infinite number of elements in the set {y ∈ Λ : {x → y}}, then we say
{x → ∞}. More conveniently, we will refer to Cx := {y ∈ Λ : x → y}, the Open
Cluster containing site x.

This allows us to consider θx(p) := Pp(|Cx| = ∞), the Probability Cx is Infinite
for a given p. (|Cx| is the size of the set Cx.) If we have two vertices x and y at
distance d, what is the relationship between θx(p) and θy(p)? If x is part of an
infinite cluster, then y would also be part of an infinite cluster if we have {x → y}.
The probability of the event {x→ y} is greater than pd, since that the is probability
that the shortest path between them is open. Thus θy(p) ≥ pdθx(p). Since every
y ∈ Z2 is some finite distance from x, if θx(p) > 0, then θy(p) > 0.

In other words, if there is a chance we have an infinite cluster somewhere, then at any
place on our lattice an infinite cluster has a chance of occurring. Either θx(p) = 0
everywhere or θx(p) > 0 everywhere. Obviously if p = 0, we have θx(p) = 0 and if
p = 1, then θx(p) is definitely greater than zero. To explore the transition between
these two endpoints, we need a few more definitions and results:

Let
A =

⋃
x∈Z2

{|Cx| =∞}.

In words, A is the event that there is an infinite cluster somewhere. Can we change
whether or not A occurs by changing the state of any finite number of bonds to be
open or closed? Nope!

Take a bond xy ∈ E(Z2). If we have a infinite cluster and xy is closed, then making
xy open only potentially adds to the infinite cluster. Similarly, if there is no infinite
cluster and xy is open, changing it to closed makes clusters only smaller.

If we add an open bond xy where x and y are each contained only in finite clusters,
then the resulting cluster is no bigger than the sum of the cluster containing x and
the cluster containing y. Thus by adding only a finite number of open bonds, we can
only join a finite number of finite clusters, resulting in a finite cluster. Hence, if we
did not start with an infinite cluster, then the resulting largest cluster will still be
finite.

If removing a bond happened to break an infinite cluster into two finite pieces, then
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adding that bond back would only result in a finite cluster, a contradiction. Thus
we could not have broken the infinite cluster into two finite pieces. Repeating this
process a finite number of times, we see that removing a finite number of bonds
cannot keep an infinite cluster from occurring. Hence we cannot change if an infinite
cluster occurs by changing a finite number of bonds.

Thus P(A) is independent of the states of any finite number of bonds in Z2. This
allows us to classify A as a Tail Event.

To properly define a tail event, let X = (X1, X2, ...) be a sequence of independent
events. If A is an event the space of possible events created by X and, for every
n ∈ N, if A is independent of X1, X2, ..., Xn, then A is a tail event.

By Kolmogorov’s 0-1 Law, the probability of a tail event is either 0 or 1, thus
P(A) is either 0 or 1. In other words, for every value p we can be certain about the
existence of an infinite cluster. The infinite cluster is not a random event for a given
p. We are certain when p = 0 that there is no infinite cluster and we are certain that
there is an infinite cluster when p = 1. But where is the transition? There must be
a p where we go from having no infinite cluster to having one with certainty.

Such a rapid transition from θx(p) = 0 everywhere to θx(p) > 0 everywhere suggests
a critical pH where Cx is finite for all p < pH and infinite for all p > pH . This critical
probability is named in honor of Hammersley. When we say percolation occurs, we
are referring to a value of p such that p > pH .

For p < pH , C0 is finite with certainty. However, the expected size of C0, Ep(C0)
is not necessarily finite. Expectation of x is the sum of the x values times their
respective probabilities, E(x) =

∑
x∈X x · p(x). To further clarify, consider the St.

Petersburg Lottery:

We will we play a game where you flip a coin until you get tails. If you get tails on
the first flip I give you 2 dollars. If you get heads on the first flip, but then get tails
on the next flip, I give you four dollars. If you get heads on first two flips but then a
tails, I give you eight dollars. And so on, until we get a tails. Needless to say, I will
become incredibly poor playing this game, but also the game is finite with certainty.
But what is the appropriate price to charge to play this game? If I wanted to make
money in the long run, I would have to price the game above the expected value of
the payout. However, the expected value E(x) is infinite:

E(x) =
1

2
2 +

1

4
4 +

1

8
8 + ... = 1 + 1 + 1 + ...

Despite the game being finite, and hence every payout being finite, the expected
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value is infinite. Similarly, a cluster can be finite with certainty even though its
expected size is not finite.

This gives us another critical value: pT is p such that Ep(|Cx|) < ∞ for p < pT
and Ep(|Cx|) = ∞ for p > pT , in honor of Temperley. Despite the abstractness of
expected size, pT is generally easy to measure or bound. A good example of this is
percolation on the Bethe Lattice, however we will not discuss it here.

What is the relationship between pH and pT ? Suppose we chose a p > pT , then
θx(p) > 0. Thus there is some probability x is part of an infinite cluster. Thus if we
break the expectation into its two parts,

Ep(|Cx|) =
∑

Cxis finite

P(|Cx|) +∞θx(p).

Since θx(p) > 0 then Ep(|Cx|) =∞ and so pT < p. Thus pT ≤ pH .

The dual graph is critical to understanding percolation in Z2.

The Dual Graph of Λ = Z2 can be seen as a shifted graph: Λ∗ = Z2 + (1/2, 1/2).
Often we take the corresponding dual bond, e∗ ∈ Λ∗, to open when e is closed and
vice versa. By Corresponding Dual Bond, we mean the bond e∗ with the same
midpoint.

Before discussing the boundary, let’s go back to examining Z2. Since no bonds
intersect anywhere other than at sites, Z2 is a Plane Graph. Plane graphs have
some really nice properties. If we draw a polygon in Z2, it divides Z2 into two regions,
the interior, which is bounded, and the exterior.

Since a cycle in Z2 forms a polygon, we can use a cycle to bound a region. Further-
more, if we have sites x0, xi, xj, xk where 0 < i < j < k < l, we cannot have two
disjoint interior paths from x0 to xj and xi to xk. Similarly, we cannot have two
exterior disjoint paths.

Now we can tackle the proof of a unique boundary for finite clusters.

3 Unique Boundary

Let’s first consider the three sets of sites of Z2: C,C∞, and R := Z2 − C − C∞.

C is the set of sites in the cluster, C∞ is the set of sites in an infinite component
disjoint from C, and R the rest of the sites in Z2 that is not in C or in C∞. [Figure 7]
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Figure 7: The set of black sites connected by black bonds are C, C∞ is the infinite
set of black sites disjoint from C ( black sites outside the blue cycle), the rest of Z2

is R (crossed out black sites). The blue cycle is ∂∞C.

The external boundary, ∂∞C, is the set of bonds in Z2∗ dual to bonds joining C and
C∞.

Proposition: If the set of sites C in a cluster is finite in Z2, then ∂∞C is an open
cycle with C on the interior.

Proof: First we must establish that C∞ is well defined and unique.

Lemma: If the set of sites C in a cluster is finite in Z2, then there exists a unique
infinite component C∞ in Z2 disjoint from C.

Existence: Since C is finite, there exists a leftmost site. Take sites to the left of that
site. That component is infinite and disjoint from C.

Uniqueness: Suppose there is more than one infinite component: C1
∞ and C2

∞. For
x ∈ C1

∞ and y ∈ C2
∞, for every path P between x and y, there must exist a site in C

that is in P . Thus C must be infinite, which is a contradiction. Hence C∞ is unique.
�

Now consider oriented bonds of the form −→uv ∈
−→
B from a site u ∈ C to a site v ∈ C∞.

For −→uv consider −→uv∗ ∈
−→
B ∗ where −→uv∗ is −→uv rotated counterclockwise on it midpoint

by π/2. Since −→uv∗ is the corresponding bond in the dual to uv, and uv is closed, −→uv∗

is open. Notice that
−→
B ∗ is an orientation of ∂∞C.
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Figure 8: Rotating bonds from C to C∞ by π/2
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We will show for −→uv∗, there exists a unique bond in
−→
B ∗ leaving the site v∗ (the

endpoint of −→uv∗):
Let us look at the immediate square around v∗ in Z2. [Figure 9]

Figure 9: The red arrow is B and the blue one is in B∗

The site s is the one in the upper right corner and t is the site in the upper left
corner. s and t may each be elements of C,C∞, or R.

Existence: If there is no bond leaving the square through the right side, then tv 6∈
−→
B

thus t cannot be in C. t also cannot be in R since it is adjacent to v, a site in C∞.
Hence, t ∈ C∞. Similarly, to prevent a bond leaving through the top of the square,

s must also be in C∞. However, since u is in C, then the bond us ∈
−→
B , and further,

us ∈
−→
B ∗, thus we must have a bond in

−→
B ∗ leaving from v∗. [Figure 10]

Uniqueness: Suppose two bonds leave the square.
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Figure 10: If we don’t allow the dashed blue lines then we cannot have the dashed red
lines and are forced to have the red line.

Figure 11: If we have the top bond and another bond, the orange site must be in C
and C∞

If one of these two is the bond leaving through the top, rotate both bonds back to
their respective elements in C and C∞. The the head or tail of st will be at the tail
or head of the other bond, respectively. This forces either s or t to be in both C or
C∞, which is a contradiction. [Figure 11]
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Figure 12: If we rotate back the bonds leaving the sides, we have s ∈ C∞ and t ∈ C
and thus the existence of two disjoint paths (Impossible!).

So both bonds must leave out the sides. This means s ∈ C∞ and t ∈ C. Further,
there must be a path of sites in C joining u and t as well as a path of sites in C∞
joining s and v. However these paths must intersect, implying the existence of a site
that is in both C and C∞, which is a contradiction. [Figure 12]

Thus there is a unique bond leaving v∗ for every −→uv∗ and since
−→
B ∗ is finite, the non-

oriented bonds in ∂∞C form cycles in the dual plane and these cycles are disjoint.
By construction, for every cycle, sites in C are to the immediate left and C∞ to the
immediate right. If there is more than one cycle then C cannot be connected, thus
∂∞C consists of a single cycle. �

We now have the tools to bound the critical probabilities: 1/3 ≤ pT ≤ pH ≤ 2/3.

4 Proof of Non-Trivial Bounds for Critical Values

on Z2

If the cluster is infinite, then the expected size of the cluster is also infinite. Thus
pT ≤ pH as mentioned above. All we must check are the outer inequalities.
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Proposition: pT ≥ 1/3.

Proof: If a site is in a cluster of x0, then there is at least one open path from x0

to that site. Thus the expected number of open paths is greater than the expected
number of sites in the cluster. The number paths of length d from x0 is µd. The
probability of a path of length d being open is pd.

A path starting at the origin has 4 possible choices for its first step. Since a path
cannot immediately return to where it just came from, there are at most 3 options
for each step after that. Thus µd ≤ 4(3d−1).

If p < 1/3 then,

E(|Cx|) ≤ E(µd) =
∑
d≥0

µdp
d ≤ 1 +

∑
d≥1

4(3d−1)pd = 1 +
4

3

∑
d≥1

(3p)d <∞.

Therefore pT ≥ 1/3. �

Proof of Upper Bound: pT ≥ 1/3.

First note the contrapositive of Unique Boundary Theorem: If we do not have bound-
ary in the dual graph around a cluster, then the size of the cluster is infinite.

For the upper bound we will consider the dual graph Z2∗ where e∗ ∈ E(Z2∗) is closed
when e ∈ E(Z2) is open. We will show that if our cluster has a sufficiently large k
“radius,” sometimes the dual graph does not contain a open cycle of any size around
our cluster (the contrapositive of the dual boundary) and also our cluster can get
that large. This will imply pH ≤ 2/3 by contrapositive of the Unique Boundary
Theorem.

Proposition: pH ≤ 2/3.

Proof: Let Lk be the line connecting (0, 0) to (k, 0) in Z2. Consider the open
dual cycle of length 2l containing Lk. The bond e∗ must occur somewhere between
(k + 1/2, 0) and (l + 3/2, 0). Thus there are fewer than l choices for e∗. [Figure 13]
The number of choices for the remainder of the cycle must be less than the number
of possible paths µ2l−1. Also recall that bonds in Z2∗ are open with probability 1−p.
Let Ep(Yk) be the expected number of open dual cycles around Lk. Then using the
same bounding of µd :

Ep(Yk) ≤
∑
l>1+k

(1− p)2llµ2l−1 ≤
4

3

∑
l>1+k

l[3(1− p)]2l
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Figure 13: The blue line is L9. Every dual cycle of length 2l = 40 around L9 must
cross the x-axis between the green line and the right side of the black cycle.

Figure 14: Independence of Ak and Bk: The bonds that determine if a line is open
are the interior ones while the ones that determine if we have a dual cycle are, at
worst, the ones around the edge.

That final sum converges for p > 2/3. [Try the ratio test! Remember k is fixed!].

Since the series is convergent, as we increase k, E(Yk) goes to zero. Thus there a K
such that for k > K, we have E(Yk) < 1. Since this expectation is less than one and
Yk measures the number of open dual cycles, there is a positive probability that there
will be no dual cycle for a given k. We will call the event that there are no dual cycles
for a given k, Ak. Notice if there are no dual cycles in the dual plane containing
our cluster, then there can be no boundary for our cluster by the contrapositive of
the Unique Boundary Theorem. Further, if a cluster has no boundary in the dual,
then it is infinite in size! Before we jump the gun, remember we are assuming the
dual cycle must go around the line Lk. This is only necessary if all the bonds in Lk
are open, which is certainly not guaranteed. Hence, let Bk be the event that all the
bonds in Lk are open. Notice events Ak and Bk are independent since the bonds
that determine if they occur are not the same. [Figure 14]

Thus for k > K, Cx ≥ P(Ak ∩Bk) = P(Ak)P(Bk) = P(Ak)p
k > 0.
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Thus pH ≤ 2/3. �

It is worth noting how drastically we over-counted in our bounding of Ep(Yk). If we
chose a walk at random of length 2l − 1, almost all the time it would not finish our
dual cycle.

Some of the things we counted for L9 and l = 100:

5 Powersets, Hypercubes, Up-sets

Now that we have established bounds on pH and pT , let us begin to tackle Harris’s
Theorem. In building up the machinery, our first goal is to show increasing events
are positively correlated (Harris’s Lemma) by looking at powersets.

Powersets may seem unrelated to percolation. However, they provide the context
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for relating different bond configurations and identification of special events on the
lattice, which will bring us to Harris’s Lemma!

First, here are three ways of thinking about the powerset, each building upon the
previous one:

The Powerset, P(S), of a set S is the set of all subsets of S.

1) For A ⊂ S we have the characteristic function: 1A : S → {0, 1} where

1A(x) =

{
1 if x ∈ A
0 if x /∈ A

Notice this is the same process as choosing which bonds are in a bond configuration.
We choose a subset of bonds to be considered open.

For a finite S, we can consider S identified by [n] = {1, 2, 3, ..., n}.
2) We can also identify a ⊂ [n] by the 0-1 sequence (ai)

n
i=1 where ai = 1 if i ∈ a

and 0 if i ∈ [n]\a. For {1, 4} ⊂ [5], (ai)
5
i=1 = (1, 0, 0, 1, 0). The set of all possible

sequences is given by {0, 1}n and identifies P([n]) .

Example: {0, 1}3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
which corresponds to {∅, {3} , {2} , {2, 3} , {1} , {1, 3} , {1, 2} , {1, 2, 3}} .
3) Finally, we can think of a Hypercube, Qn, as the graph where vertices are given
by elements of P([n]). [See Figure 15 for Q3] An edge connects two vertices (the
sets a ⊂ [n] and b ⊂ [n]) if there is only one element in their symmetric difference,
∆.
[
a∆b = (a ∪ b)\(a ∩ b)

]
.

Another way of picturing Qn is the vertex set given by {0, 1}n ⊂ Rn and there is an
edge connecting vertex a and b if a − b = ±ei where (e1, e2, ..., en) is the canonical
basis of Rn.

Now P([n]) can be partially ordered1 by a ≤ b if a ⊂ b. This provides a nice

orientation of the bonds in Qn. [See figure 16 for Q3] The bond ab is now
−→
ab if a ≤ b

for a, b ∈ P([n]).

If we select elements to be in our subset with probability p for each element, we
the can now talk about the Weight Hypercube with Probability p, Qn

p and its
associated probability measure, P, on elements of the vertex set.

1Conditions for a partially ordered set: The partial ordering ≤ where a, b, c ∈ P([n]):
i) a ≤ a (reflexivity)
ii) a ≤ b and b ≤ a⇒ a = b (antisymmetry)
iii) a ≤ b and b ≤ c⇒ a ≤ c (transitivity)
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Figure 15: Q3

Figure 16: Q3 : Partially Ordered
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Suppose p is 1/2. The probability of choosing a set of vertices A at random is just
a series of n coin flips for each element of |A|/2n.

In general, for a = (a1, a2, ...an) ∈ Qn and A ⊂ Qn,

P(A) =
∑
a∈A

[∏
ai=1

p
∏
ai=0

(1− p)

]

This is no different from selecting bonds to be considered open with that probability
measure.

Let us define a Up-set, or an increasing event as:

For a, b ∈ Qn, U ⊂ Qn is an up-set if a ∈ U and a ≤ b⇒ b ∈ U .

Similarly, we can define a Down-set as

For a, b ∈ Qn, D ⊂ Qn is a down-set if b ∈ U and a ≤ b⇒ a ∈ D.

Why do increasing events matter?

There are sets of bonds necessary to have open to form an open horizontal crossing
of a rectangle, H(R). Such sets are examples of up-sets. Some of these sets are
disjoint from another, while others share most elements. However, adding additional
open bonds doesn’t change the value of the event. It still occurs. If we think of a
bond configuration, A, and then we add bonds to make a set B, then A ⊂ B. If
A⇒ H(R), then B ⇒ H(R). Thus H(R) is an increasing event.

6 Harris’s Lemma

Before we prove Harris’s Lemma, we will show that the set of configurations with a
fixed path of open bonds is an up-set, a bit grander than the previous conclusion.

Once again, let us consider a rectangle. The set of bonds within this rectangle is
a finite set S of size n. Order the bonds as you choose to describe the associated
hypercube Qn. Let us consider a bond configuration a ∈ Ω with its only bonds
being an open path within R. Looking at the open bonds in our rectangle R, this
corresponds to a vertex a∗ ∈ Qn. Now if we add more open bonds within this
rectangle, this open path still exists, and this configuration b ∈ Ω corresponds to
a vertex b∗ ∈ Qn. Notice that a∗ ≤ b∗. Consider the set of all configurations that
contain this open path. If a configuration is in this set, adding bonds produces
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Figure 17: Set A with A0 and A1

another configuration in this set. Thus the set of configurations with this open path
is an up-set.

Harris’s theorem gives us the somewhat intuitive result that increasing events are
positively correlated and thus easier to bound. By positively correlated, we mean
P(A ∩B) ≥ P(A)P(B).

When we ask what is the probability of having both a vertical and horizontal open
path of a region R, Pp(V (R) ∩H(R)), we will shortly prove that the probability is
greater than P(V (R))P(H(R)), where P(V (R)) and P(H(R)) are the probabilities of
having a vertical open path and a horizontal open path, respectively. This makes
sense since a horizontal crossing implies there is an open path from the left to the
right side and any vertical distance this path travels only aids a vertical crossing.

Consider A ⊂ Qn:

Define At =
{

(ai)
n−1
i=1 : (a1, a2, ..., an−1, t) ∈ A

}
⊂ Qn−1 where t ∈ {0, 1}. [Figure 17]

If A is an up-set then A0 ⊂ A1. [Figure 18]

As previously, let’s define Qn
p to be the weighted hypercube and P to be the associated

probability measure: for Qn−1
p we will use the same P even though it is a different

measure. Note:
P(A) = (1− p)P(A0) + (p)P(A1). (1)

Since we only need to consider p = 1/2, we will prove it in that case.

Thus the above note simplifies to P1/2(A) =
P1/2(A0)+P1/2(A1)

2
.

Harris’s Lemma: If A,B are up-sets then P1/2(A ∩B) ≥ P1/2(A)P1/2(B)
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Figure 18: If A is an Up-Set

Proof:

We proceed by induction on n. For n = 1, if A,B are up-sets then A,B ∈
{{1} , {∅, {1}}} otherwise written as A,B ∈ {1, {0, 1}}.
If A = B = {1} then P(A ∩B) = P({1}) = 1/2 > 1/4 = P(A)P(B)

If A = B = {∅, {1}} then P(A ∩B) = P({∅, {1}}) = 1 = P(A)P(B)

If A = {∅, {1}} and B = {1} then P(A ∩B) = P({1}) = p = 1/2 = P(A)P(B)

The other case follows from symmetry.

Assume the theorem is true for Qn−1. Hence P(A0)P(∩B0) ≤ P(A0 ∩B0). Show that
Harris’s Lemma holds for Qn.

Let P1/2(A0) = α, P1/2(A1) = γ, P1/2(B0) = β, P1/2(B1) = δ, P1/2(A0 ∩B0) = θ, and
P1/2(A1 ∩B1) = φ. [Figure 19]

We want to show (α+γ)
2

(β+δ)
2

= P1/2(A)P1/2(B) ≤ P1/2(A ∩B) = θ+φ
2

or equivalently:
(α + γ)(β + δ) ≤ 2(θ + φ).

By induction, we get assume θ ≥ αβ and φ ≥ γδ.
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Figure 19: A Graphical Representation of These Probabilities

Since A0 ⊂ A1 and B0 ⊂ B1, then α ≤ γ and β < δ. So

0 ≤ (γ − α)(δ − β)

= αβ + γδ − αδ − γβ
= −αβ − γδ − αδ − γβ + 2αβ + 2γδ

≤ −αβ − γδ − αδ − γβ + 2(θ + φ)

So moving everything except the last term over we get exactly what we want:

(α + γ)(β + δ) = αβ + γδ + αδ + γβ ≤ 2(θ + φ).

Hence, P1/2(A ∩B) ≥ P1/2(A)P1/2(B). �

Additionally, within a fixed rectangle, any event X where adding more open bonds
never makes the event false is also an increasing event. This argument is similar to
the fixed open path argument above, however rather than looking at just one bond
configuration as the minimum, we will consider a set of bond configurations as the
minimum. (In terms Qn we go from considering just one vertex to a set of vertices.)
The set of bonds within this rectangle is a finite set S of size n and order the bonds
as you choose to describe the associated hypercube Qn. Let us consider F a set of
bond configurations such that for every bond configuration A ∈ F , the event X
occurs. But for all edges such that e is open in A (technically {{e}, 1} ∈ A), X does
not occur for the bond configuration A if e is closed. F describes a set of vertices in
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Qn. Since adding more open bonds does not make the event X false, then for every
superset of every A ∈ F has X occurs. Thus the set of bond configurations for which
X occurs is an up-set and X is an increasing event.

7 Crossing a Square

Our long term goal is to create dual cycles around the origin. In order to do this, it
is convenient to first find the probability of a open crossing of a square in Z2. We
then will use the probability of this crossing to bound the probability of crossing
thinner rectangles. Rotating and aligning these rectangles allows us to bound the
probability of dual cycles around the origin.

Let’s consider a rectangle, R in Z2 with dimensions A×B with the lower left corner
at the point (a, b).

Let’s define R′ to be a rectangle with dimensions A− 1× B + 1 with the lower left
corner at the point (a+ .5, b− .5).

If a bond, e, is open in R, the bond e∗ in R′ that intersects e is taken to be closed.

Let H(R) be the event that there is a horizontal crossing of R, that is, that there is
a path of open bonds from the left to the right side of R, and let V (R′) be the event
that there is a vertical crossing of R′.

Lemma 1 Exactly one of H(R) and V (R′) will occur for any given bond configura-
tion in R.

Proof: Given a bond configuration on R [Figure 20], create an Archimedean lattice
where octagons are gray or white if they correspond to sites in R or R′, respectively.
At an intersection of a bond, e, and a dual bond, e∗, exactly one will be open: we
will place a square, colored gray if e is open and white if e is closed. [Figure 21]

Notice a horizontal crossing is independent of the states of bonds on the left and
right edges of R. Thus regardless of the state of those bonds, we will make the
state of bonds on the left and right of R to be open. Similarly, a vertical crossing
is independent of the bonds on the top and bottom of R′ and so we will take those
bonds to be closed. [Figure 22]

H(R) can only occur if there is a path of gray octagons and squares joining the left
and right sides. Similarly, V (R′) only occurs if there is a path of white octagons and
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Figure 20: A Bond Configuration on R

squares joining the top and bottom.

In other words, to have both H(R) and V (R′) occur, we need two disjoint interior
paths: yet this is impossible. At most one of H(R) and V (R′) must occur.

Yet we still must show that one of them must occur. Assume H(R) does not occur.
We must show V (R′) occurs.

Now consider the interface graph, I, where edges are edges in the lattice which
separate gray regions from white ones, and vertices are at the endpoints of each edge
in I. With the exception of the corners x, y, z, w which have degree one, the degree
of every vertex is two. (Since the rest of the vertices are at the intersection of three
faces, two of faces must share a color by the pigeonhole principle.) If a vertex is part
of a cycle, the vertex is required to have at least two edges and the vertex must be
adjacent to two vertices that are also in a cycle. Thus if a vertex v in I is adjacent
to a vertex not in a cycle, v must not be a cycle as well. Consider the component
containing x.

The site x cannot be a part of a cycle since its degree is one. Thus the vertex adjacent
to x is also not part of a cycle. Thus the component containing x is without a cycle.
Since every vertex of this component has degree at most two, then this component
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Figure 21: Associated Archimedean lattice

Figure 22: Modified Archimedean lattice
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Figure 23: The Path from x

is a path! Seeing that we have restricted ourselves to a path within a rectangle, this
path must terminate. Noting that the degree of the every non x, y, z, w vertex is
two, the path cannot terminate anywhere other than the corners x, y, z, w. The path
cannot terminate at x, since doing so would make a cycle. It cannot terminate at w,
otherwise we have a horizontal crossing of R [It is the same argument as presented
below for y]. The path cannot terminate at z, since at every edge along the path in
I, beginning at one leaving x, gray has remained on the right. To end at z would
mean we would have switched gray to the left. Thus the path containing x must
terminate at y. [Figure 23]

Since our path in I ends at y, take the subgraph T ⊂ R that correspond to white
octagons and squares to the left of the path in I. Form a minimal connected subgraph
P in T from the top to bottom, discarding unnecessary bonds and sites. Thus P is
a path from top to bottom and V (R′) occurs. �

It is important to note that the vertical crossing found by this method is the leftmost
vertical crossing of R. This path is not determined by the state of the bonds to the
left of it and thus is independent of these bonds. This is crucial in the next section.

Corollary 1: Now consider a bond configuration given by the probability measure:
Pp. Bonds in R are open with probability p and bonds in R′ are open with probability
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1− p. Since every bond configuration in R determines the bond configuration in R′:

Pp(H(R)) + P1−p(V (R′)) = 1.

Corollary 2: Consider a rectangle N with dimensions n × n − 1. If p = 1/2, then
P1/2(H(N))+P1/2(V (N ′)) = 1. Notice N ′ is N rotated by π/2. Thus the probability
of having a vertical crossing of N ′ is the same as having a horizontal crossing of N .
[P1/2(H(N)) = P1/2(V (N ′))] Therefore,

P1/2(H(N)) = 1/2.

Corollary 3: Consider a square S, with dimensions s × s. Since the square has
more possible open horizontal paths than the rectangle N :

P1/2(H(S)) ≥ 1/2. And by symmetry:

P1/2(H(S) = P1/2(V (S)) ≥ 1/2.

This argument is equivalent to R in the dual and R′ in Z2. Thus for the following
arguments, so long as we are working with p = 1/2, it is unnecessary to specify which
lattice we are working in.

8 Russo-Seymour-Welsh Method: From Squares

to Rectangles

An Intersection of Paths

Consider a rectangle R, with dimensions m× 2n (m > n) and a square S ⊂ R with
dimensions n× n which shares the lower left corner with R. [Figure 24]

Lemma 2: Let X(R) be the event that there is a open path joining the right side of
R to a vertical crossing of S. Then

Pp(X(R)) ≥ Pp(V (S))Pp(H(R))

2
.

Approach: We are going to assume there is a vertical crossing of S and then
show that the conditional probability of event X(R) is bounded below by half the
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Figure 24: R from Lemma 2

probability of a horizontal crossing of R. We will exploit the fact that the leftmost
vertical crossing is independent of the states of bonds to its right. Then we will use
the properties of conditional probability to achieve the desired result.

Proof: Assume there is a vertical crossing, V (S), of S. Thus we must have a leftmost
vertical crossing of S, denoted LV (S). Consider a path P0 in S that traverses S from
top to bottom, let Y (P0) be the event {LV (S) = P0}, that our path is the leftmost
vertical crossing of S given V (S) occurs.

Let the path P ′0 be the mirror of P0 over the horizontal centerline of R. We can
consider P1 the path formed by the union of the paths P0, P ′0, and the bond joining
both of them at the centerline of R.

In general, the event H(R) is not independent of Y (P0). Yet, consider the event
W (P0), the existence of an open path P2 from the right side of R to a site in P1

which only intersects P1 at one of P2’s endpoints. If there is a horizontal crossing of
R, then every open path from right to left must intersect P1. Hence if H(R) occurs,
W (P0) occurs and so Pp(H(R)) ≤ Pp(W (P0)).

What is the relationship between events W (P0), Y (P0), and X(R)? Remember the
leftmost vertical crossing of S is independent of bonds to its left. Thus any path
P2 ∈ W (P0) is independent of Y (P0). Thus Pp(W (P0)|Y (P0)) = Pp(W (P0)).
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Additionally, any open path P2 ∈ W (P0) is equally likely to end at a site in P ′0 as
P0. Thus at least half the time W (P0) occurs, given Y (P0) occurs, we have the event
X(R). Thus

Pp(X(R)|Y (P0)) ≥ Pp(W (P0)|Y (P0))

2
=

Pp(W (P0))

2
≥ Pp(H(R))

2
.

Finally, V (S) is a disjoint union of the events Y (Pi) for i ∈ I where I indexes the
number of paths from the top to bottom of S. Thus if V (S) occurs, exactly one of

Y (Pi) occurs. Thus we have that Pp([X(R)|V (S)]|Y (Pi)) = Pp([X(R)|V (S)]∩Y (Pi))

Pp(Y (Pi))
=

Pp([X(R)∩Y (Pi))

Pp(Y (Pi))
= Pp(X(R)|Y (Pi)).

By the law of total probability, and since P0 was an arbitrary vertical path in S :

Pp(X(R)|V (S)) =
∑
i∈I

Pp([X(R)|V (S)]|Y (Pi))Pp(Y (Pi)) (2)

=
∑
i∈I

Pp(X(R)|Y (Pi))Pp(Y (Pi)) (3)

≤
∑
i∈I

Pp(H(R))

2
Pp(Y (Pi)) (4)

=
Pp(H(R))

2

∑
i∈I

Pp(Y (Pi)) (5)

=
Pp(H(R))

2
(6)

(2) Law of Total Probability
(3) The previous paragraph
(4) First part of this lemma
(5) Since a horizontal crossing does not depend on i
(6) Given a vertical crossing occurs, this space is filled summing over all events
Also by the properties of conditional probability:

Pp(X(R) ∩ V (S))

Pp(V (S))
= Pp(X(R)|V (S)) ≥ 1

2
Pp(H(R)).

Since X(R) ⊂ V (S) we have:

Pp(X(R)) ≥ Pp(V (S))Pp(H(R))

2
. � (7)
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Figure 25: M from Lemma 3

A Wider Rectangle

Now let’s define a function h(a, b) = P1/2(H(R)) where R is a rectangle with dimen-
sions a × b. Additionally, let’s define v(a, b) = P1/2(V (R)) where R is a rectangle
with dimensions a× b.
Lemma 3: h(3r, 2r) ≥ 2−7 for r ∈ N.
Proof: Let M be a 3r × 2r rectangle.

Consider R,R′, and S pictured in Figure 25 with dimensions (2r×2r), (2r×2r), and
(r × r), respectively. Once again, let X(R) be the event that there is a open path
joining the right side of R to a vertical crossing of S. Let X ′(R′) be event that there
is a open path joining the left side of R′ to a vertical crossing of S. Now suppose both
of these events occur and also we have a horizontal crossing of S. This horizontal
path will cross both of our vertical paths associated with X(R) and X ′(R′). Thus
we can follow a path from the left side of M to S via X ′(R′), travel along a portion
of H(S) that connects the two open vertical crossings, and by following X(R), leave
S along an open path to the right side of M. In summary, whenever X(R), X ′(R′)
and H(S) occur, H(M) also occurs.

Thus h(3r, 2r) = P1/2(H(M)) ≥ P1/2(X(R) ∩H(S) ∩X ′(R′)).
Now the probability of the intersection of these events may be tricky to calculate but
Harris’s Lemma makes our lives much easier. Why can we apply Harris’s Lemma?
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Consider just X(R). If X(R) occurs for a bond configuration, it will occur if we add
additional open bonds. Thus by the remark following Harris’s Lemma, X(R) is a
increasing event. The same is true of X ′(R′) and H(S).

By Harris’s Lemma:

P1/2(X(R) ∩H(S) ∩X ′(R′)) ≥ P1/2(X(R))P1/2(H(S))P1/2(X ′(R′)).

By Lemma 2, P1/2(X(R)) ≥ P1/2(V (S))P1/2(H(R))

2
. By symmetry, this is also true for

P1/2(X ′(R′)), replacing R with R′.

Hence P1/2(X(R))P1/2(H(S))P1/2(X ′(R′)) ≥ P1/2(V (S))2P1/2(H(R))P1/2(H(R′))P1/2(H(S))

4
.

Since R, S and R′ are squares, by the third corollary of Lemma 1, the probability of
each of these events is greater than one half:

Hence
P1/2(V (S))2P1/2(H(R))P1/2(H(R′))P1/2(H(S))

4
≥ .52.53

22
= 2−7.

Following the string of inequalities, h(3r, 2r) ≥ 2−7. �

From A Rectangle to a Ribbon

While all we need is to show h(6r, 2r) is greater than a positive constant, to show a
more general result is straightforward.

Lemma 4: h(kr, 2r) ≥ 217−8k for any k ≥ 3 and r ≥ 1.

Proof : First we will show h(m+ n− 2r, 2r) ≥ h(m, 2r)h(n, 2r)/2 when m,n > 2r.

Similar to above, we will show an intersection of events will guarantee a horizontal
crossing.

We break the rectangle into two rectangles with an overlapping region of 2r by 2r.

In the above picture [Figure 26] we have the intersection of the following events:

• A Horizontal Crossing of the rectangle of dimension m by 2r.

• A Horizontal Crossing of the rectangle of dimension n by 2r

• A Vertical Crossing of the rectangle of dimension 2r by 2r.

Notice that the intersection all three events will give us a horizontal crossing of the
whole rectangle. After applying Harris’s Lemma to the intersection of those three
increasing events:

h(m+ n− 2r, 2r) ≥ h(m, 2r)h(n, 2r)v(2r, 2r)

≥ h(m, 2r)h(n, 2r)/2. By Corollary 3 of Lemma 1
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Figure 26: Rectangle from Lemma 4

If we can break up a rectangle appropriately and bound the probability of the hori-
zontal crossings of the two smaller rectangles, then we can bound the probability of
a horizontal crossing of the larger rectangle.

Figure 27: The rectangle in our special case

Thus letting m = k, n = 3r, and applying Lemma 3:

h(k + r, 2r) ≥ h(k, 2r)h(3r, 2r)/2.

≥ 2−8h(k, 2r)
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And so applying this process iteratively to a longer rectangle [Figure 27]:

h(kr, 2r) ≥ 2−8(1)h((k − 1)r, 2r)

≥ 2−8(2)h((k − 2)r, 2r)

≥ ...

≥ 2−8(k−3))h((k − (k − 3))r, 2r)

= 2−8(k−3))h(3r, 2r)

≥ 217−8k By Lemma 3. �

9 Harris’s Theorem

We are almost there. The following argument is as straightforward as doing anything
an infinite number of times is.

Recall in proving the upper bound of pH , we showed, if the cluster is big enough,
there does not exist a cycle in the dual that contains the cluster. Here we will do the
opposite. We will show the existence of a cycle in the dual that effectively lassos the
cluster containing the origin. Thus the cluster must be finite in size and pH ≥ 1/2!

Harris’s Theorem: pH ≥ 1/2.

Proof: If θ(1/2) = 0, the probability the origin is part of an infinite cluster is zero,
then pH ≥ 1/2.

From Lemma 4: h(6r, 2r) ≥ 2−31.

By taking four rectangles, R1, R2, R3, and R4, of dimension 6r × 2r, rotating and
overlapping them as necessary, we can create a square annulus Ar with dimension
6r×6r on the exterior and 2r×2r square on the inside, centered at the origin. Note
that r measures the minimum distance the interior square is from the origin. We
are in the business of finding the probability this annulus has a cycle containing the
origin, Dr. [Figure 28]

Notice Dr occurs when we have a horizontal crossings of the two wider rectangles
(R1 and R3) and vertical crossings of the two narrower ones (R2 and R4). [Figure 29]
Thus

P1/2(Dr) ≥ P1/2 (H(R1) ∩H(R3) ∩ V (R2) ∩ V (R4)) .

These crossings are all increasing events in the dual lattice (where p is actually
decreasing), and so applying Harris’s Lemma:
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Figure 28: Ar with a Dr cycle.

P1/2(Dr) ≥ P1/2 (H(R1) ∩H(R3) ∩ V (R2) ∩ V (R4)) (8)

≥ P1/2(H(R1))P1/2(H(R3))P1/2(V (R2))P1/2(V (R4)) (9)

= h(6r, 2r)2v(2r, 6r)2 (10)

≥ 2−122 (11)

=: ε (12)

(9) Harris’s Lemma
(10) Dimensions of the rectangles
(11) Since h(6r, 2r) = v(2r, 6r) ≥ 2−31

(12) Set ε to be 2−122

Notice, the probability Dr being false, P1/2(Dc
r) is less than 1− ε.

While the chance of any specific annulus containing a cycle is very low, our lower
bound of this probability is independent of the size of the annulus or its distance
from the origin. Hence, testing for convergence should be easy. While we may rush
to find the probability that every annulus does not contain a cycle and claim it is
zero, we should be more careful! These annuli have overlapping regions and thus Dn

may not be independent of Dn+1. For example, A1 and A2 have this problem. We
will choose a subset of {Ar|r ∈ N} that do not overlap to ensure independence.
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Figure 29: The union of four paths

Notice that the length of an outer side of Ar is 3 times the length of the inner square.
Each successive annulus needs to be at least 3 times wider than the previous one—use
of a power of four may come in handy. Let’s choose A1 to be in the subset. Thus the
first annulus has a inner square with length 2 and an outer one with length 6. The
function f : N → {Ar|r ∈ N} where f(n) = A4n−1 produces an independent subset,
H.

Consider the event that the origin is a part of an infinite cluster, with probability
θ(0,0)(1/2). Then the cluster must pass through the exterior of every element of H,
otherwise it is finite. Hence there is a path of open bonds entering every Ar through
the interior and exiting the exterior. Since those bonds are open, the corresponding
bonds in the dual must be closed and thus every Dr must be false. Thus

θ(0,0)(1/2) ≤
⋂
Ar∈H

P1/2(Dc
r) ≤

∞∏
1

(1− ε) = 0.

Since θ(0,0)(1/2) = 0, everywhere θ(1/2) = 0 and thus pH ≥ 1/2. �
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Figure 30: The first four elements of H

10 Conclusion

Since pH is at least 1/2, when p = 1/2, any cluster in the lattice is finite with
certainty. By symmetry, any cluster in the dual lattice is also finite when p =
1/2. We can imagine clusters in both lattices attempting to grow off to infinity but
getting trapped by larger clusters in the other lattice, which are doomed to the same
fate—two lattices locked in an eternal battle. Further, pH ≥ 1/2 shows that we can
never have infinite component in both lattices at the same time. Twenty years after
Harris’s Theorem, Kesten [1980] proved that pH is, in fact, equal to 1/2. Hence, as
p increases, we go from having an infinite cluster with certainty in the dual lattice
to a brief moment of no infinite clusters, and finally to having an infinite cluster in
the square lattice. Thank you for journeying with me through these proofs, I have
certainly enjoyed it.

Where do we go from here? Percolation is a rich subject and certainly understanding
Kesten’s proof would be the most logical next step for the reader. For those wishing
to apply percolation theory, consider a quick search of applied percolation theory.
Applications to cement mixing (http://fire.nist.gov/bfrlpubs/build00/PDF/
b00098.pdf) and superconductors (http://arxiv.org/ftp/cond-mat/papers/0204/
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0204082.pdf) were some of the first results I found. Finally, if you want to impress
your barista, you can explain to him or her how coffee passing through the filter can
be modeled by a random process on an infinite lattice, where in this case, percolation
occurs.

Cheers,
Benjamin T. Hansen
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